Protein Networks Reveal Detection Bias and Species Consistency When Analysed by Information-Theoretic Methods
نویسندگان
چکیده
We apply our recently developed information-theoretic measures for the characterisation and comparison of protein-protein interaction networks. These measures are used to quantify topological network features via macroscopic statistical properties. Network differences are assessed based on these macroscopic properties as opposed to microscopic overlap, homology information or motif occurrences. We present the results of a large-scale analysis of protein-protein interaction networks. Precise null models are used in our analyses, allowing for reliable interpretation of the results. By quantifying the methodological biases of the experimental data, we can define an information threshold above which networks may be deemed to comprise consistent macroscopic topological properties, despite their small microscopic overlaps. Based on this rationale, data from yeast-two-hybrid methods are sufficiently consistent to allow for intra-species comparisons (between different experiments) and inter-species comparisons, while data from affinity-purification mass-spectrometry methods show large differences even within intra-species comparisons.
منابع مشابه
On the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملA Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks
Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...
متن کاملAn Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition
Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...
متن کاملکاربرد روشهای شناسایی تورش انتشار برای فراتحلیل در ارزیابی تاثیر داروی آلبندازول در درمان مبتلایان به آسکاریس و تریکوسفال
Background : Meta analysis is a statistical method to combine the findings of a set of large number of published individual studies and re-analyse them. The use of meta-analysis methods in medical research has been increased, noticeably, in resent years. However, one of the major shortcomings in such analysis is that the researcher, could not access all conducted studies in the area of concern...
متن کاملA New Intrusion Detection System to deal with Black Hole Attacks in Mobile Ad Hoc Networks
By extending wireless networks and because of their different nature, some attacks appear in these networks which did not exist in wired networks. Security is a serious challenge for actual implementation in wireless networks. Due to lack of the fixed infrastructure and also because of security holes in routing protocols in mobile ad hoc networks, these networks are not protected against attack...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010